PENERAPAN NILAI RATA-RATA RGB PADA APLIKASI PENGUKUR KEMATANGAN BUAH TOMAT
DOI:
https://doi.org/10.37087/jtb.v2i2.27Keywords:
Buah Tomat; Pengolahan Citra; Rata-Rata RGBAbstract
Tomato is a fruit that grows in many tropical and subtropical areas. Tomatoes ripen very quickly, so improper handling can cause them to rot quickly. Distribution of tomatoes over long distances can cause quality degradation which can affect nutritional value. Farmers have many weaknesses to identify manual tomato ripeness due to factors such as fatigue, lack of motivation, experience, proficiency and so on. To solve this problem, the development of information technology allows identification of fruit maturity and even detection of fruit types with the help of computers. With the digital image, technology-based tomato maturity classification can be carried out. Therefore, in this study, the application of tomato maturity classification was carried out by applying the RGB average method to make it easier to determine the level of maturity of tomatoes. In this tomato maturity classification application, several processes are carried out, namely image reading, cropping, segmentation and RGB average calculation. There were 24 images of ripe tomatoes and 25 images of raw tomatoes used in the classification test for tomato maturity and the success rate was 95%.
References
Achmad, B & Firdausy, K. 2013. Pengolahan Citra Digital Menggunakan Delphi.
Yogyakarta : Andi Yogyakarta.
Presman, R. 2010. Software Engineering : Practitioner’s Approach 7th Edition. New York: McGraw-Hill
Riska, S. Y. 2015. Klasifikasi Level Kematangan Tomat Berdasarkan Perbedaan Perbaikan citra Menggunakan Rata-Rata RGB Dan Index Pixel. Malang: STMIK Asia Malang
Vibhute, Anup, dan Bodhe, S.K. (2013). “Outdoor Illumination Estimation of Color Images”.
IEEE, Communication and Signal Processing hal 331-334.
Riska, S. Y., & Subekti, P. (2016). Klasifikasi Level Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Multi-SVM. Jurnal Ilmiah Informatika, 1(1), 39-45.
Pratama, R., Fuad, A., & Tempola, F. (2019). DETEKSI KEMATANGAN BUAH TOMAT BERDASARKAN FITUR WARNA MENGGUNAKAN METODE TRANSFORMASI
RUANG WARNA HIS. JIKO (Jurnal Informatika dan Komputer), 2(2), 81-86.
Kusumanto, R. D., & Tompunu, A. N. (2011). pengolahan citra digital untuk mendeteksi obyek menggunakan pengolahan warna model normalisasi RGB. Semantik, 1(1).
Harllee Packing Inc. “Product: Premium product are a Harllee tradition’’. 28 November. http://www.harlleepacking.com/products/
Permadi, B. E. (2019). Rancang bangun alat sortir kematangan buah belimbing berdasarkan ukuran dan warna dengan mikrokontroler arduino.
Astrianda, N. (2020). Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine. VOCATECH: Vocational Education and Technology Journal, 1(2), 45-52.
Arief, M. (2019). Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Warna Menggunakan Metode SVM. Jurnal Ilmu Komputer dan Desain Komunikasi Visual, 4(1), 9-16.
Hidayatullah, P. (2017). Pengolahan Citra Digital Teori dan Aplikasi Nyata. Bandung: informatika.
Astrianda, N., & Mohamad, F. S. (2017). Ripeness Identification of Tomato Using Different Color Models Based on Neural Networklevenberg-Marquardt. World Applied Sciences Journal, 35, 57-61.
Ichsan, A. Z., Andrizal, M. T., Yendri, D., & Kom, M. Perancangan dan Pembuatan Sistem Visual Inspection Sebagai Seleksi Buah Tomat Berdasarkan Kematangan Berbasis Web Camera.
Rosa, A. S. (2018). Rekayasa Perangkat Lunak dan Berorientasi Objek Edisi Revisi
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ina Kurnia Sari

This work is licensed under a Creative Commons Attribution 4.0 International License.